
CS 111
Variables, if statements, if/else, Boolean operators

Models for Variable Declaration/Assignment

• DATA_TYPE VARIABLE_NAME; // Declaration
• int x;

• int x, y;

• VARIABLE_NAME = VALUE; // Assignment
• x = 0;

• x = 1, y = 2;

• DATA_TYPE VARIABLE_NAME = VALUE; // Initialization
• int x = 0;

• int x = 1, y = 2;

Models for output/input

• cout << THING; // Output
• e.g. cout << VARIABLE_NAME; // Outputs value stored in variable

• cout << “Enter DATA_TYPE”; // Prompts user for input

• cin >> VARIABLE_NAME; // Reads input value into variable
• cin >> x;

• cin >> x >> y; // user will type value, press enter; type next value, press enter

Variable Types

• Integer – int
• int year = 2020;

• Double – double
• double price = 1.96;

• String – string
• string city = “New York City”;

• Character – char
• char star = ‘*’;

• Boolean (True/False) – bool
• bool is_last = false;

Model for if

if (CONDITION) {

STATEMENT(s);

}

• If the CONDITION is true, execute the STATEMENT

• If the CONDITION is not true, do not execute the STATEMENT
• In other words, if CONDITION is false, just skip the following code block

Model for if/else

if (CONDITION) {

STATEMENT(s);

} else {

STATEMENT(s);

}

• If CONDITION is true, execute first STATEMENT(s)

• If CONDITION is false, execute second STATEMENT(s) after else

Model for if/else if/else

if (CONDITION) {

STATEMENT(s);

} else if (CONDITION) {

STATEMENT(s);

} else {

STATEMENT(s);

}

• Use this when you have three or more branches for your decision tree

• Use additional else if (CONDITION) statements for each additional decision
tree branch

Boolean operators

• Use when you want to test more than one condition for a single if
statement

• And - &&
• In an expression connected by &&, all elements must be true for the entire

expression to evaluate as true

• Or - ||
• In an expression connected by ||, if any element is true, the entire expression

is evaluated as true

• Not - !
• !(true) = false
• !(false) = true

Examples of conditions (single and compound)

• Examples using count = 0, limit = 10, x = 12, y = 15
• (count == 0) && (limit < 20)

• (count > 5)

• (limit > 20) || (count < 5)

• !(count == 12)

• (x > y)

• (count < 10) && (x < y)

• (y > x)

• (limit < 20) || ((limit / x) > 7)

• (limit >= 5) && (limit <= 10) // limit between 5 and 10 (not 5 <= limit <= 10)

Lab 4.1 Pseudocode

Function Main
// Determines if three integers are entered in increasing order
Declare three integer variables x, y, z
Ask the user to enter three different numbers
If x is less than y and y is less than z

print “Increasing” to the monitor
Else if x is greater than y and y is greater than z

print “Decreasing” to the monitor
Otherwise

print “Neither”

